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Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University Prague, V Holešovičkách 2, 180 00 Praha 8, Czech Republic

Received 31 July 2007; accepted 20 November 2007
Available online 26 December 2007

This paper is dedicated to the 60th birthday of Wolfgang Domcke our friend and collaborator who influenced significantly our scientific career.
Abstract

We examine in detail the origin of irregular oscillatory structures in the cross-sections of low-energy resonant vibrational excitation of
several diatomic molecules by electron impact. We show that these irregularities are caused by a combination of two phenomena: enhanc-
ing of the magnitude of the nuclear wave function in the vicinity of poles in the complex energy plane corresponding to quasi-bound
vibrational states of the molecular anion, and energy variations of the phase of the nuclear wave function which corresponds to the reflec-
tion in the potential well of the molecular anion and which are sometimes called boomerang oscillations. These two phenomena are usu-
ally both involved in the nuclear dynamics. The former one is usually dominant at lower energies (NO molecule) and in systems where the
potential energy of the molecular anion (H2 in high rotational states) possesses an outer potential well. The latter one dominates if the
width of the quasi-bound vibrational states of the molecular anion is relatively large (e.g. at higher energies for NO and N2 molecule, H2

in ground state).
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

While the treatment of the vibrational dynamics of small
molecules in the electronically bound states is becoming
more and more routine, the treatment of the systems
involving electrons in continuum still presents a challenge
for theory. An important example in terms of both applica-
tions and interesting basic phenomena to be comprehended
by theory, is the treatment of low-energy electron collisions
with diatomic molecules e� + AB (treatment of polyatomic
molecules is even more challenging but beyond the scope of
the present paper). One of the additional difficulties in the
theoretical treatment of low-energy electron–molecule col-
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lisions is the frequent presence of resonances (metastable
AB� states) which enhance the coupling of the electronic
and nuclear degrees of freedom. This coupling is responsi-
ble for large size of inelastic cross-sections and for number
of interesting phenomena including threshold peaks, cusps
at the opening of new channels, sharp vibrational reso-
nances and oscillations below dissociative attachment
A + B� threshold.

It would be difficult to comprehend all these phenomena
with brute-force methods like vibrational close coupling
expansions. On the other hand powerful approach capable
to describe all these phenomena has been proposed long
time ago in pioneering works of Chen [1], O’Malley [2,3],
Bardsley [4] and Nakamura [5,6]. It is based on projec-
tion-operator separation of the electronic space to a dis-
crete electronic state and an electronic continuum and is
often described with the term ‘‘non-local resonance model”
(NRM). Common understanding of the role of the discrete
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state is, that it should approximate the resonance state
AB� as close as possible with a square-integrable function.
While this may be good for some cases, it has been known
for long time [7] that more important is that the discrete
state is weakly dependent on the internuclear distance R

and that orthogonalization of the electronic continuum
to this state restores the validity of Born–Oppenheimer
approximation for the nuclear motion. Recently it has even
been demonstrated explicitly, for exactly solvable model [8]
that the choice of the discrete state is, in fact, to a large
degree arbitrary as long as it describes the correct asymp-
totic bound state A + B� for large R and it depends weakly
on R for all distances.

Following the initial development of the theory [1,2,7,4–
6] the theory has been used for the semiempirical determi-
nation of model parameters within the local complex
potential (LCP) approximation. The theory was further
refined and its use for calculation of cross-sections for
inelastic low-energy electron–molecule processes from the
first principles has been pioneered by Wolfgang Domcke
and collaborators [9] for number of systems and a very
good agreement of the theory with scattering experiments
has been reached.

One of the key advantages of the non-local resonance
model is its interpretation power due to enormous simplifi-
cation of the complicated many-body problem. The key
quantity of the theory, the discrete state component
of the full wave function of the system, is a function of
one coordinate R only and is thus easily plotted and
interpreted.

To our best knowledge, nobody systematically studied
the origin of the irregularities (asymmetric peaks) in the
oscillatory structures which often occur in the vibrational
excitation cross-sections for energies below the dissociative
attachment threshold. A main goal of this paper is, to take
the advantage of the interpretation power of the non-local
resonance theory, and to explain these irregularities using
several well-studied diatomic resonance systems. We also
show that the qualitative explanation of these structures
is more or less independent of the level of approximation
used for the description of nuclear dynamics.

After a general theoretical discussion of the origin of
these irregularities in the next section we present results
for the N2 and NO molecules for which we used the local
complex potential approximation [10,11] and for the H2

molecule for which we employed the latest non-local reso-
nance model [12].

2. Description of nuclear dynamics and interpretation of

projected wave function

The non-local resonance model and the solution of the
dynamics within its framework has been described in detail
elsewhere [9]. In this section we only briefly review the for-
mulae needed as a basis for subsequent discussion. We also
give a preliminary quantitative discussion of the phenom-
ena occurring below dissociative attachment threshold.
The subsequent chapters support these qualitative argu-
ments with quantitative results for different systems.

Nuclear dynamics involved in resonance electron–mole-
cule collisions can be described by the effective Schrödinger
equation with the non-local, energy-dependent, and com-
plex potential V effðE;R;R0Þ which can sometimes be
approximated by a local complex potential (like in the N2

case). In general, a discrete state component wEðRÞ of the
full wave function of the e� + AB system satisfies the
equation

ðE � T N ÞwEðRÞ �
Z

dR0V effðE;R;R0ÞwEðR0Þ

¼ V d�i
ðRÞvvi

ðRÞ; ð1Þ
where T N is the kinetic energy operator of the nuclei, V d�i

is
the coupling matrix element of the electronic hamiltonian
between the discrete state and the continuum state with
the energy �i of the incoming electron and vvi

ðRÞ is the
vibrational wave function of the target molecule in the
Born–Oppenheimer approximation. The energy conserva-
tion requires E ¼ Evi

þ �i. This equation does not fix the
normalization of the wave function wEðRÞ since any solu-
tion of the homogeneous equation can be added. This
problem is removed by rewriting Schrödinger equation into
the integral form of Lippmann-Schwinger equation

wE ¼ G0ðEÞV d�i vvi
þ G0ðEÞV eff wE; ð2Þ

where G0ðEÞ ¼ ½E þ ie� T N ��1 is the retarded free-particle
Green’s function. Both G0ðEÞ and V eff act as integral oper-
ators on wEðRÞ in coordinate representation. In this formu-
lation the normalization of the wave function wEðRÞ is fixed
with the incoming flux of electrons, with spatial distribu-
tion determined by the target vibrational wave function
vvi
ðRÞ and the size of the flux is controlled by the coupling

element V d�i
between the discrete state AB� and the initial

continuum state e� + AB with electron energy �i. One
would therefore expect that the magnitude of the wave
function wEðRÞ is mainly determined by V d�i . As we will
see later the dependence is in general much more
complicated.

To understand this we will first look on the form of the
effective potential

V effðE;R;R0Þ ¼ V dðRÞdðR� R0Þ þ
Z

V d�ðRÞ

� ½E � T N � V 0ðRÞ � �þ ie��1V �d�ðR0Þd�:
ð3Þ

The first term is the local discrete state potential V dðRÞ. The
second term is the non-local non-hermitian part resulting
from the coupling with the electron continuum. While this
term is both computationally and interpretationally more
difficult, it has usually limited range in R. For large R we
can fully comprehend the dynamics as motion in the local
potential V dðRÞ.

Now let us return to the magnitude of the wave function
wEðRÞ. If the coupling V d� is small, than the second term on
the right hand side in Eq. (3) is also small and the dynamics
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of wEðRÞ can be understood as an oscillatory motion in
V dðRÞ with small leaking for small R due to the non-local
term. In the time-dependent picture we would see this oscil-
latory motion with a small absorption at the small R. The
smallness of the absorption (the consequence of the small
magnitude of V d�) leads to the long residence time which
will manifest in the time-independent picture as a dramatic
increase of the magnitude of the wave function. However
this is possible only for certain energies, where the positive
interference of the wave travelling one cycle in V d with
itself is happening. The energy dependence of the magni-
tude of the wave function will thus show peaks for energies
where this condition is met, coinciding with the energies of
the bound states in V dðRÞ with precision controlled by the
uncertainty principle between the energy width and the res-
idence lifetime, controlled in turn with the magnitude of
V d�. This gives the picture of vibrational anion resonances
AB�. The peaks in the wave function magnitude lead to the
peaks in the vibrational excitation cross-section

ri!f ¼
4p3

k2
i

jhvvf
jV d�f jwEij

2
: ð4Þ

For the large coupling V d� the dynamics could be under-
stood as follows: the source term (the first term on the right
hand side) in (2) describes the capture of the electron in the
discrete state. This is followed by immediate (direct) decay,
but some of the flux escapes into region of larger R where
the dynamics is governed by purely local potential V dðRÞ.
For the energies below dissociation attachment threshold
the flux is reflected back into region of small R where the
electron leaves by autodetachment (decay after reflection),
with probability controlled again by V d�. For large V d�, all
the flux is thus absorbed, but the direct decay and the decay
after reflection interfere giving interference oscillations in
the cross-section. The frequency of the oscillations is con-
trolled by the energy dependence of the phase for travelling
in the potential V d from the capture point (close to the
equilibrium distance R0) to the outer turning point for
given energy E and back again. This gives the picture of
the boomerang oscillations.

The magnitude of the quantity V d� depends both on
energy E and the internuclear distance R. There is thus
smooth transition between both the above mentioned
mechanisms and they can mix in a complicated way. It is
furthermore difficult to distinguish between them from
the cross-section, because the phase determining the sepa-
ration of the vibrational anion resonances AB� and the
phase controlling boomerang oscillations differ only by
phase attained by travelling in V d from the point R0 to
the inner turning point in V d which are usually close. But
the two phases can differ noticeably. In the subsequent sec-
tions we will show how to separate the two effects and how
the interplay of both with noticeably different phase can
lead to irregularities in the shape of the structures in the
vibrational excitation cross-section. The separation is
based on the observation that the first mechanism involves
the change of the magnitude of the wave function wE, while
the phase is important for the second mechanism. We will
also show the cases that can be understood as purely boo-
merang oscillations or purely as vibrational anion
resonances.

The analysis performed above remains fully valid also
for the local complex potential approximation, where the
non-local part of the potential is replaced with the local
quantity dðR� R0Þ DðRÞ � i

2
CðRÞ

� �
and the discrete state-

continuum coupling with
ffiffi
ð

p
CðRÞ=2pÞ.

3. Discussion of specific systems

In this section we analyse the structure of vibrational
excitation cross-sections for several systems. Calculations
were performed using both local complex potential approx-
imation (for molecules N2 and NO) and non-local reso-
nance model (for H2) to demonstrate universality of the
suggested explanation of observed structures.

3.1. N2 – almost pure boomerang oscillations

Though vibrationally inelastic electron scattering off the
N2 molecule was discussed by many authors (see e.g.
[10,13–16]), no detailed explanation of the irregular oscilla-
tory structure was provided yet. Therefore we have chosen
this classical example of the so-called boomerang oscilla-

tions to discuss first, although it is not an example of pure
boomerang oscillations but rather both mechanism
described above play an important role.

The cross-sections of vibrational excitation of N2 from
ground vibrational state to several final states calculated
in the LCP approximation are shown in Fig. 1, solid lines.
Oscillatory structures in these cross-sections are compared
with the energy dependence of the square of the norm,
NðEÞ (short dashed lines), of the nuclear wave function
wEðRÞ (see Eq. (1)) multiplied by the exit amplitude
V dEf
ðRÞ which is in this case independent of the final chan-

nel and given by the square root of the width CðRÞ divided
by 2p, hence

NðEÞ ¼ hwEjCðRÞ=2pjwEi: ð5Þ
The peaks in the energy dependence of the norm NðEÞ of

the wave function provide information how the dynamics
of the electron–molecule system is influenced by the poles
in the complex-energy plane corresponding to quasi-bound
vibrational states of the molecular anion. The smaller is the
width CðE;RÞ, the closer these poles lie to the real axis and
the more pronounced is the effect of these states. Note that
in the limit of zero width the vibrational states of the
molecular anion would be bound and the norm would
become infinite at the corresponding energies. Note also
that the decrease of the norm for lower and higher energies
is due to the lower probability of creation of N�2 (propor-
tional to jV d�j2) for these energies.

The most striking characteristics of the vibrational exci-
tation cross-section in Fig. 1, clearly visible for the transi-
tion 0! 1, is the difference between the spacing of peaks
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Fig. 1. Vibrational excitation cross-sections (solid lines) for transitions
from the ground vibrational state of N2 to the final states 0; . . . ; 4 are
plotted together with the square of the norm of the wave function wEðRÞ
(short dashed lines, see Eq. (1)) and the cross-section divided by this
quantity which should exhibit boomerang oscillations (long dashed curve).
Vertical lines indicate positions of vibrational levels in the real part of the
local complex potential of N�2 . Notice that spacing between peaks of the
boomerang oscillations is different (larger) than that of vibrational levels
in the molecular anion potential (see text for details).
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in the cross-section and the spacing of quasi-bound vibra-
tional levels of N�2 (depicted by vertical lines) or the spac-
ing between peaks in the norm NðEÞ. We see that there is
no clear assignment of the cross-section peaks to vibra-
tional levels of the molecular anion, not even for the elastic
cross-section (top panel).

To understand fully the positions of the peaks in the
cross-sections we can ask whether one would see any struc-
ture in the cross-section if there would be no enhancement
of the magnitude of the nuclear wave functions for ener-
gies close to the quasi-bound vibrational states of the
molecular anion. To answer this question we renormalized

the expression V dkf
ðRÞwEðRÞ to have a unit norm (i.e.

NðEÞ ¼ 1) before we calculate the cross-section using the
formula (4). This renormalization is equivalent to division
of the cross-section by NðEÞ. In other words we factorise
the cross-section into the product of the term (5), indepen-

dent of the phase of the wave function and the renormalized
term independent of the magnitude of the wave function wE.
By this procedure we suppress the influence of the
enhancement of the magnitude of the wave function on
the cross-section and what is left are pure oscillations
resulting from energy variation of the relative phase of
the nuclear wave function with respect to the final vibra-
tional state.

To demonstrate this we plotted in Fig. 1 also the cross-
sections divided by NðEÞ. In these functions we can observe
rather regular oscillations of similar frequency as in the
cross-sections. Positions of minima in the cross-sections
are almost exactly determined by minima of these functions
(note that some peaks which are pronounced in the norm
NðEÞ, completely disappear in the cross-sections) but posi-
tions of peaks in the cross-section are clearly influenced by
positions of maxima of both NðEÞ and the boomerang
oscillations. Therefore we can conclude that both mecha-
nism are important for explanation of the oscillatory struc-
ture for N2 molecule.

To finish our discussion of the vibrational excitation
cross-sections for N2 we plotted in Fig. 2 the cross-sections
for transitions 1! 2 and 2! 3. We can see that for
higher initial vibrational states some peaks in the norm
of the wave function disappear (e.g. the third peak for
vi ¼ 1) and that the rest is not so regular as for mi ¼ 0; as
a consequence some peaks are more pronounced than the
others. This behaviour can be understood if we write a for-
mal solution of Eq. (1) as

jwEi ¼ lim
g!0

X
n

j/nih/nj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðRÞ=2p

p
jvvi
i

E � En þ ig
; ð6Þ

where j/ni are quasi-bound vibrational states with complex
energies En (the finite lifetime of these state is determined
by the resonance width CðRÞ). We can see that the effect
of the pole at energy En on the dynamics of the system
can be suppressed if the overlap h/nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðRÞ=2p

p
jvvi
i is zero

or very small. This was not the case of vi ¼ 0 but it happens
for higher initial vibrational states.
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Fig. 3. The same as in Fig. 1 but for the NO molecule and the transition
0! 1 and 0! 2 only. Results of the standard LCP approximation
calculation.
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Fig. 4. The same as in Fig. 3 but results obtained using the LCP
approximation with the energy-dependent barrier penetration factor.
Notice that appearance or disappearance of some peaks corresponding to
quasi-bound vibrational levels of the molecular anion strongly depend on
the used model.
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Fig. 2. The same as in Fig. 1 but for transitions 1! 2 and 2! 3. Notice
that there are vibrational levels in the molecular anion potential to which
no peak in the energy dependence of the norm corresponds (see text for
details).
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3.2. NO – boomerang oscillations strongly influenced by

existence of quasi-bound vibrational state of NO�

In the case of NO molecule the situation is more compli-
cated than in N2 case because of the existence of three res-
onances of NO� (3R�; 1D, and 1Rþ electronic states) which
all contribute significantly to the vibrational excitation
cross-sections. For simplicity we limit ourself to the discus-
sion of the irregularities in the cross-section which result
from the contribution of the 3R� negative ion state. Other
irregularities which come into play because of adding the
three contribution together are discussed in other papers
(see e.g. [11,17]).

Because the non-local resonance model for electron col-
lisions with NO molecule is not yet available we have calcu-
lated the contribution of 3R� state to the vibrational
excitation (0! 1 and 0! 2) cross-sections using the local
complex potential approximation as given by Trevisan et al.
[11]. In Fig. 3 we show the results obtained by the standard
local complex potential (LCP) approximation in which the
entry and exit amplitudes are energy-independent. The
cross-sections in Fig. 3 have incorrect behaviour for energies
close to the threshold (the cross-section is overestimated by
the standard LCP approximation), therefore somewhat
arbitrary barrier penetration factor was introduced in [11]
to get more realistic energy dependence of the cross-sections
at the threshold. The resulting cross-sections for the same
transitions as in Fig. 3 are plotted in Fig. 4.
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As in the N2 case we observe irregularities in the oscilla-
tory structure, especially for energies near the threshold,
and some peaks which are profound in the norm NðEÞ
are suppressed in the cross-section. Thus the positions of
the peaks result again from the interplay of the two mech-
anisms described above. Both contributions give a nice reg-
ular structures and only in combination the irregularities
appear. What should be stressed is that appearance or dis-
appearance of some peaks corresponding to vibrational
levels of NO� is strongly dependent on the model which
it is used for calculations. For example the second peak
in the norm NðEÞ is suppressed if the standard LCP
approximation is used (Fig. 3, upper panel), but it appears
in the cross-section if the barrier penetration factor is
included. Thus it would be worthy to study this process
in detail using a non-local resonance model constructed
with a correct energy dependence of the resonance width
and entry and exit amplitudes.

3.3. H2 molecule – pure boomerang oscillations for ground

state, narrow resonances for high rotational states

The origin of the oscillatory structure in the cross-sec-
tions of vibrational excitation of hydrogen molecule was
a conundrum since its existence was predicted by Mündel
et al. [18] and confirmed experimentally by Allan [19]. Ger-
titschke and Domcke [20] used a time-dependent descrip-
tion of resonant electron–molecule collisions to study this
process and claimed that the oscillatory structure is ‘‘a con-
sequence of the dramatic broadening of the wave packet”
rather than its quasiperiodic movement in the potential
well of negative anion. This was in contrast to the previous
explanations of similar structures in the vibrational excita-
tion cross-sections for N2 based on the boomerang model
[13,14,16] and provoked to search for an alternative expla-
nations. We mention at least two papers by Narevicius and
Moiseyev [21,22] in which the authors proposed that the
oscillatory structure is ‘‘a fingerprint of broad overlapping
resonances” supporting their statement by a non-Hermi-
tian properties of the effective Hamiltonian of H�2 within
the local complex potential approximation. Although their
results are mathematically correct we do not think they
provide a better physical insight into the dynamics of the
studied process. They found a solution of the problem in
a non-standard, but complete basis of the non-physical
vibrational states of H�2 with complex energies but scatter-
ing solutions at real energies which are needed for calcula-
tion of the cross-sections do not show a fingerprint of these
states, not even for energies close to the energies of these
states because corresponding poles lie far from the real axis
due to the large resonance width of H�2 and many poles
contribute and interfere in a complicated way.

Finally the authors of this paper in collaboration with
Domcke [23] returned to the original ideas of the boomer-
ang model [13] and suggested that the oscillatory structure
in the vibrational excitation cross-sections has indeed its
origin in the reflection of the wave packet in the long-range
potential of H�2 and that these oscillations are even pure

boomerang oscillations if the molecule H2 is initially non-
rotating. This result was supported by inspection of the
properties of the oscillations which were explained com-
pletely on the basis of the boomerang model (see [23] for
details).

Following the general discussion of the previous section
we demonstrated explicitly in Fig. 5 that the structures (for
angular momentum J ¼ 0 and the vibrational transition
vi ¼ 0! 4) are pure boomerang oscillations for the norm
does not show any enhancement in the vicinity of the
quasi-bound vibrational levels of H�2 (indicated again by
vertical lines). Note that in this case the oscillations are
very regular apart from the rapid decrease of spacing
between subsequent peaks towards the dissociative attach-
ment threshold at 3.72 eV which is caused by the profound
anharmonicity of the long-range potential energy curve of
H�2 .

The situation changes if the initial rotational state of the
hydrogen molecule with higher J is considered. Then the
oscillations become more irregular (see Fig. 6) and again
the two effects discussed above play important role. The
reason is that for J J 20 an inner barrier in the effective
potential of H�2 appears (see [24], Fig. 1) which prevents
the system to return into the autodetachment region where
the captured electron can again escape and thus the width
of the quasi-bound vibrational states of H�2 is considerably
smaller having much more profound effect on the dynamics
of the H�2 system. (see [25,24] for details on these long-lived
states of H�2 ). In Fig. 6 we plot an example of an irregular
oscillatory structure for higher rotational state of
H2; J ¼ 20. We can see that in this case the energy depen-
dence of the norm NðEÞ is very dramatic about the first
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last two oscillations in cross-section are located above dissociative
attachment (DA) threshold protected from dissociation by 15 meV high
centrifugal barrier.
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three vibrational states of H�2 but much less for states clo-
ser to the dissociative attachment threshold. Thus we deal
here again with both mechanisms described above.

4. Conclusions

We have used the interpretation power of the simple
and accurate description of the low-energy resonant col-
lisions of electrons with the diatomic molecules devel-
oped by Domcke and others to study irregularities in
the oscillatory structure of the vibrational excitation
cross-sections. We have shown by comparing the cross-
section functions with the energy dependence of the
norm of the resonant part of the nuclear wave function
that these structures are very often a combination of
two effects, enhancement of this norm in the vicinity of
vibrational levels of the negative molecular ion and the
interference due to phase changes of this wave function
with energy.
The resulting boomerang oscillations in the cross-sec-
tions can have peaks displaced from the positions of the
vibrational levels of the molecular anion as, e.g. for N2

molecule. This displacement depends on the details of the
dynamics, especially on the resonance width. There is, in
general, no clear assignment of the cross-section peaks to
vibrational levels of the negative ion, not even for the elas-
tic cross-section.
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[24] M. Čı́žek, J. Horáček, W. Domcke, Phys. Rev. A 75 (2007) 012507.
[25] R. Golser, H. Gnaser, W. Kutschera, A. Priller, P. Steier, A. Wallner,
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